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Abstract. Exchange rate forecasting plays an important role in shaping monetary and fiscal policies, ensuring

price stability, managing the balance of payments and facilitating foreign trade. At the microeconomic level,

accurate exchange rate forecasts allow businesses to manage the currency risks associated with international

transactions, make informed decisions about pricing, production and investments, and guide portfolio diversifi-

cation strategies for investors. Forecasting contributes to the stability and growth of the Turkish economy by

providing valuable insight into future exchange rate movements and assists policymakers, businesses and investors

in managing the uncertainties of global financial markets. In this study, out-of-sample forecasts for the USD/TRY

exchange rate in 2023 were made using data from January 2000 to December 2022. The linearity of the USD/TRY

series was tested using the Harvey and Leybourne (2007) and Harvey et al. (2008) tests, which indicated that the

series is nonlinear. The stationarity analysis of the series was conducted using the Sollis (2009) and Enders-Lee

(2012) tests, which confirmed that the USD/TRY series is integrated of order one I(1). For out-of-sample forecast-

ing in 2023, ARIMA, ARFIMA, F-ARMA, and TvAR models were applied. Based on the forecast performance

criteria of RMSE and MAPE, it was determined that the F-ARMA and TvAR models outperformed the ARIMA

and ARFIMA models. When comparing F-ARMA and TvAR, it was found that the forecasts obtained from the

TvAR model were more accurate.
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1 Introduction

Forecasting exchange rates holds great importance for a country and businesses, as it assists
country and business managers in making informed decisions that can impact their economic
performance and competitiveness (Alagidede & Ibrahim, 2017). Exchange rate forecasting for
a country provides information to guide monetary policy decisions and anticipate and respond
to changes in the global economy. For example, a country’s central bank uses exchange rate
forecasts to guide decisions related to interest rates, which can directly influence the value of
the country’s currency. Additionally, exchange rate forecasting allows for predicting the impact
of changes in global trade flows or economic conditions on a country’s economy. This aids in
making decisions regarding foreign trade policy and other economic policies (Salvadore, 2019).

Examining exchange rate forecasting from a business perspective, it plays a significant role in
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making strategic decisions regarding international trade, investment, and operations. A business
engaged in exporting goods uses exchange rate forecasts to predict how changes in the value of a
currency will affect the prices of their goods in foreign markets. Similarly, a business operating
in multiple countries would naturally want to forecast how changes in currency values will affect
their revenues and costs. The resilience of their forecasts is associated with how accurately
the exchange rate can be predicted (Yu et al., 2005). Therefore, exchange rate forecasting
is an indispensable tool for businesses in determining where to invest and operate. It helps
them anticipate and respond to changes that can positively or negatively impact their economic
performance and competitiveness in the global economy.

In summary, exchange rate forecasting holds vital value for both countries and businesses,
as it assists in predicting and responding to changes that can affect their economic performance
and competitiveness in the global economy (Amiti et al., 2014).

The USD/TRY exchange rate is an important economic indicator for Turkey, as it can have
a significant impact on various aspects of the country’s economy. A strong dollar can make
Turkish goods and services more expensive for foreign buyers, which can harm industries reliant
on exports. On the other hand, a weaker dollar can make Turkish goods and services more
competitive, accelerating export growth (Özcan & Kalafatcılar, 2009).

Furthermore, the USD/TRY exchange rate can directly affect inflation and consumer prices
by influencing the costs of imported goods and services. A stronger dollar can increase the cost
of imported goods and services, leading to higher inflation and a decrease in purchasing power
for Turkish consumers (Civcir and Akçaǧlayan, 2010). In addition, the USD/TRY exchange rate
also affects the Turkish government and businesses with dollar-denominated debt. A stronger
dollar can make it more expensive for the government and businesses to repay their dollar-
denominated debt, putting pressure on their financial stability (Obstfeld et al., 2010).

In summary, the USD/TRY exchange rate has various effects on the Turkish economy, partic-
ularly in terms of foreign trade, inflation, and the stability of the financial sector and government
(Kandil et al., 2007).

2 Literature Review

In their study, Güneş and Kaya (2021) forecasted the daily exchange rates of the USD, EUR,
and GBP using the ARFIMA and FIAPARCH methods. The results indicated the presence
of long memory in volatility for all exchange rates. On the other hand, Aliyev et al. (2022)
examined Russia’s RTS index using daily data and compared the forecasting performance of
the LSTM and ARIMA-GARCH methods. The findings suggested that LSTM, a deep learning
method, outperformed the ARIMA-GARCH method.

Canıtez and Savaş (2022) predicted the prices of 10,309 Bitcoins using LSTM and ARIMA-
GARCH. In contrast to Aliyev et al. (2022) study, this research showed that the ARIMA-
GARCH method yielded better results compared to LSTM. Burucu and Bal (2017) employed
the ARIMA method to forecast the annual honey production in Turkey for the year 2013.
According to the ARIMA prediction, the honey production in Turkey was estimated to reach
121,216 tons in 2023.

Ameur et al. (2023) compared the performance of various methods including LSTM, RNN,
GRU, ANN, CNN, and ARFIMA in forecasting daily BCI, BASI, BPMSI, BLSI, BIMS, and
BES indexes. The results indicated that LSTM, DRU, and RNN models were selected as the
best forecasting methods among others. Derbentsev et al. (2019) investigated the performance
of the BART, ARIMA, and ARFIMA methods in forecasting Bitcoin, Ethereum, and Ripple
cryptocurrencies using daily data. The study found that BART outperformed ARIMA and
ARFIMA in terms of forecasting accuracy. Deðirmenci and Akay (2017) analyzed BIST100,
Gold, Exchange Rates, and Oil variables using daily data with the ARIMA and ARCH models.
The results revealed the presence of ARCH effect in all ARIMA models considered, and the most
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Table 1: Literature Review

Authors Area Compared Models Conclusion

Chiang and Kahl (1991) Treasury Bill Rate Constant Coefficient TvAR is better

Brown et al. (1997) UK house prices CPM, VAR, AR TvAR is better

Lundbergh et al. (2003) Simulated Data AR, STAR TvAR is better

Karakatsani and Bunn
(2008)

Electricity prices Regime Switching, AR,
Linear Regression

TvAR is better

D’Agostino et al. (2011) Unemployment, infla-
tion, interest rate

RW, SV-VAR, VAR-
REC

TvAR is better

Dangl and Halling (2012) S&P500 index Bayesian model averag-
ing

TvAR is better

Barnett et al. (2014) Growth and inflation RSVAR, ST-VAR etc TvAR is better

Chan (2017) Inflation UC-SVM, RW TvAR is better

Wang et al. (2017) Real prices of crude
oil

FC-CC FC-TVP is better

Wei and Zhang (2020) USA AR, NTV, RW TvAR is better

successful forecasting results were obtained for the gold variable. Akay et al. (2019) forecasted
the Turkish house price index using monthly data and compared the performance of ARIMA,
Random Forest, and Hybrid Random Forest methods. The evaluation showed that the Hybrid
model outperformed the other methods in predicting the house price index.

Aktağ and Yiǧit (2016) examined the inflation variable using monthly data and compared the
performance of Box-Jenkins and Artificial Neural Networks (ANN) methods. The performance
evaluation indicated that the ARIMA method outperformed ANN. Kumar (2014) investigated
the Indian rupee using daily data and analyzed it using the ARFIMA-FIGARCH and ARFIMA
FIAPARCH methods. The findings suggested the presence of long memory in both returns and
volatility. Sevli (2019) evaluated the performance of Support Vector Machine, Näıve Bayes,
Random Forest, K-Nearest Neighbors, and Logistic Regression methods using the Wisconsin
Breast Cancer dataset. The logistic regression method achieved the highest accuracy of 98.24%
and was identified as the most successful method.

Özmen et al. (2018) performed a performance evaluation of various classification methods,
including DVM, Näıve Bayes, J48, Random Forest, Adaboost, Logistic Regression, Single-Layer
Perceptron, Multilayer Perceptron, and Bagging Decision Trees, using the 303-heart disease
dataset. The findings indicated that the DVM algorithm provided the best results compared to
other methods. Additionally, a literature summary comparing the forecasting performances of
TvAR models with other models is presented in Table 1.

3 Methodology

3.1 Harvey Linearity Test

Over the past 50 years, the effects of structural breaks and nonlinearity on time series have been
extensively studied in time series econometrics. Based on this foundational knowledge, tests
have been developed to determine whether a time series is linear or not, drawing on numerous
theoretical studies. These tests can be categorized into two main groups:

1. General specification error tests: Ramsey RESET (1969), McLeod-Li (1983), Keenan
(1985), Tsay (1986).

2. Tests specific to certain nonlinear structures: Engle (1982), LR test, Terasvirta (1994),
and Hansen (1999).

In the past 15 years, new linearity tests have been developed by Harvey and Leybourne
(2007) and Harvey et al. (2008).
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To apply the test introduced by Harvey et al. (2008) in the literature, the model used under
the assumption that the time series is stationary at the level, or in other words, the time series
is integrated of order zero (I(0)), can be represented as follows.

yt = β0 + β1yt−1 + β2y
2
t−1 + β3y

3
t−1 +

p∑
j=1

β4,j4yt−j + εt (1)

Here, ∆ is the differencing operator, and p represents the lag order. The appropriate lag
order, as suggested by Harvey et al. (2008), is recommended to be determined as pmax =

int
(

8 ∗
(
T
100

)0.25)
, where T is the length of the time series. The null and alternative hypotheses

of the test are expressed as follows.
H0,I(0) : β2 = β3 = 0⇒W0 (The series is linear)
H1,I(1) : β2 6= β3 = 0 (The series is not linear)

The test statistic, on the other hand, is calculated using the W0 = T ∗
(
RSSr

0
RSSu

0
− 1
)

formula.

Here, T represents the number of observations, while RSSr0 and RSSu0 respectively denote the
residual sum of squares obtained from restricted and unrestricted equations.

Under the assumption that the time series is non-stationary in levels, that is, it is integrated
of order 1 or (I(1)), the model to be constructed is represented as follows.

4yt = λ1∆yt−1 + λ2(∆yt−1)
2 + λ3(∆yt−1)

3 +

p∑
j=1

λ4,j4yt−j + εt (2)

The null and alternative hypotheses for this test equation are expressed as follows.
H0 : λ2 = λ3 = 0⇒W1 (the series is linear)
H0 : λ2 6= λ3 6= 0 (the series is not linear)

The test statistic, on the other hand, is calculated using the W1 = T ∗
(
RSSr

1
RSSu

1
− 1
)

formula.

Here, T represents the number of observations, while RSSr0 and RSSu0 respectively denote the
residual sum of squares obtained from the restricted and unrestricted equations.

In cases where the degree of stationarity of the time series is not precisely known, Harvey
et al. (2008) developed an alternative test statistic using the previous two test statistics. This
test statistic is denoted by the

Wλ = {1− λ}W0 + λW1

formula. The Wλ test statistic follows a χ2 distribution with two degrees of freedom. In cases
where linearity is not detected in the series, the stationarity of the series should be examined
using nonlinear unit root tests.

In the literature of nonlinear unit root tests, there have been approximately 20 different
tests encountered in the past 25 years, starting from the work of Leybourne et al. (1998)
and Enders-Granger in 1998. Fourier-based unit root tests, developed taking into account the
frequency characteristics of the time series, are examined under the title ’Unit Root Tests Based
on Fourier Functions’ in the literature. However, it is also possible to consider these tests as
nonlinear unit root tests. For this purpose, in the empirical part, the presence of a unit root in
the USD/TRY series is investigated using the Sollis (2009) test, a nonlinear unit root test, and
the Enders and Lee (2012) test, which is based on Fourier functions.

3.2 Unit Root Tests

3.2.1 Sollis (2009) Nonlinear Unit Root Test

Nonlinear unit root tests are based on different functional patterns such as SETAR, MTAR,
ESTAR, LSTAR, among others. The Sollis (2009) test is a test developed based on the ESTAR-
type function from these patterns. Prior to the Sollis (2009) study, Kapetanios et al. (2003)
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developed a unit root test based on the same function. The KSS (2003) test assumed that the
tendency of the series to revert to the mean is the same at each point. In other words, this test
assumes that negative and positive shocks to the series have the same effect. The main difference
between the Sollis (2009) test and the KSS (2003) test is that the Sollis (2009) test allows for a
model based on the AESTAR function, which allows for differentiation in the impact of negative
and positive shocks on the series. The Sollis (2009) unit root test is expressed by the following
equation.

∆yt = G (γ1, yt−1) {St (γ2, yt−1) ρ1 + (1− St (γ2, yt−1)) ρ2} yt−1 +
k∑
k=1

ki∆yt−1 + εt (3)

The terms G (γ1, yt−1) and St (γ2, yt−1) in this equation are defined as follows.

G (γ1, yt−1) = 1− exp
(
−γ1

(
y2t−1

))
, γ1 ≥ 0

and
St (γ2, yt−1) = {1 + exp (−γ2yt−1)}−1, γ2 ≥ 0

In the case of zero mean, the presence of a unit root in equation (3) is tested with the
following hypothesis.

H0 : γ1 = 0

In order to test the null hypothesis, γ2, ρ1 and ρ2are not defined, thus a first-order Taylor
expansion around γ1 = 0 needs to be applied to equation (3). As a result, in order to test the
presence of a unit root, the following equations are obtained where all parameters are defined.

∆yt = ρ1γ1y
3
t−1St (γ2, yt−1) + ρ2γ1y

3
t−1 (1− St (γ2, yt−1)) + ηt (4)

Here, ηt = εt+Rt. Rt represents the remainder term from the Taylor expansion. If equation
(4) is rewritten by interchanging St (γ2, yt−1) and S∗t (γ2, yt−1)=St (γ2, yt−1)-0.5,

∆yt = ρ∗1γ1y
3
t−1S

∗
t (γ2, yt−1) + ρ∗2γ1y

3
t−1 (1− S∗t (γ2, yt−1)) + ηt (5)

is obtained. Here, ρ∗1 and ρ∗2 are linear functions of ρ1 and ρ2. Equation (5) allows for the
same non-linear pattern as equation (6). After obtaining the first-order Taylor expansion of
S∗t (γ2, yt−1) around γ2=0 in equation (5), we reach the equation

∆yt = a (ρ∗2 − ρ∗1) γ1γ2y4t−1 + ρ∗2γ1y
3
t−1 + ηt (6)

Since a=1/4, equation (6) can be written as follows.

∆yt = φ1y
3
t−1 + φ2y

4
t−1 + ηt (7)

Here, φ1 = ρ∗1γ1 and φ2 = a(ρ∗2 − ρ∗1) γ1γ2. In the case of autocorrelation in equation (7), to
eliminate the autocorrelation, equation (7) can be expanded and rewritten as follows.

∆yt = φ1y
3
t−1 + φ2y

4
t−1 +

k∑
i=1

ki∆yt−i + ηt (8)

Thus, the null hypothesis expressed as H0 : γ1 = 0 in equation (3) will be expressed as
H0 : φ1 = φ2 = 0. While this hypothesis indicates non-stationarity, the alternative hypothesis
represents symmetric or asymmetric ESTAR stationarity. In the case of rejecting the null
hypothesis, to decide whether the series exhibits symmetric or asymmetric ESTAR stationarity,
the hypothesis H0 : φ2 = 0 is tested against the alternative hypothesis H1 : φ2 6= 0. Here,
the null hypothesis indicates symmetric ESTAR stationarity, while the alternative hypothesis
indicates asymmetric ESTAR stationarity. To test the null hypothesis expressed in equation
(8), the F critical values shown in Table 1 of Sollis (2009) article should be used instead of
conventional F critical values.
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3.2.2 Enders and Lee (2012)

This test is observed to have good size and power properties compared to traditional tests.
Enders and Lee (2012) developed a new unit root test of the Dickey-Fuller type using Fourier
functions in the deterministic term. The deterministic term denoted by α(t) is a function of
time, and the Dickey-Fuller-type regression model is represented by equation (9).

yt = α (t) + ρyt−1 + γt+ εt (9)

In Equation (9), α(t) represents a time-dependent deterministic function, while εt, represents
a stationary error term with variance σ2ε . The hypothesis being tested is the absence of unit
root (ρ=1). In cases where the structure of the deterministic form, α(t), is unknown, it can lead
to biased results in testing the null hypothesis. To overcome this problem, it has been suggested
that the unknown functional structure of α(t) can be expressed using Fourier terms as shown
below:

α (t) = α0 +

n∑
k=1

(αksin
2πkt

T
+ βkcos

2πkt

T
); ; n ≤ T/2 (10)

In Equation (10), n represents the frequency count, T represents the number of observations,
and k represents the specific frequency count. If α1 = β1 = · · · = αn = βn = 0, it indicates
that the process is linear and requires the application of a traditional unit root test. On the
other hand, if there is a structural break or a nonlinear trend in the series, it implies the presence
of at least one Fourier frequency in the data generation process. A notable advantage of the
Fourier approach is its global rather than local approximation. Additionally, the size and power
properties of this test are better than the Augmented Dickey-Fuller (ADF) test, which is a linear
unit root test.

If we treat Equation (10) as a regression equation, including a large value for the frequency
count n requires the incorporation of numerous frequency components. This can be problematic
when the number of observations in the time series is small, as it reduces the degrees of freedom
and may lead to overfitting issues. Therefore, instead of specifying the specific form of α(t), it
is more reasonable to select appropriate frequencies to be included in Equation (10). Assuming
the use of a single frequency k, the test equation can be expressed as follows:

4yt = ρyt−1 + c1 + c2t+ c3sin

(
2πkt

T

)
+ c4cos

(
2πkt

T

)
+ εt (11)

In Equation (11), the test statistic obtained from testing the null hypothesis ρ=0 is symbol-
ized as τDF t, representing the DF version of the test. As the asymptotic properties of the DF
version tests are not different from the asymptotic properties of the LM version tests, it is not
preferred to demonstrate a separate asymptotic distribution for this test. Another important
aspect of the Enders and Lee (2012) test is that the critical values are only dependent on the
frequency count (k) and the sample size (T), without being influenced by Fourier terms or other
deterministic terms. The critical values generated for the single frequency equation based on
Monte Carlo simulations conducted by Enders and Lee are presented in Table 1a and Table 1b
in the respective article, while for the equation with cumulative frequency, they are presented
in Table 2a and Table 2b.

The estimation process for the appropriate frequency value k in Equation (11) is carried out
using a two-step method shown below.

Stage 1: In the first stage, Equation (11) is estimated using the Ordinary Least Squares
(OLS) method for 1 ≤ k ≤ 5. The value that minimizes the sum of squared residuals (RSS) is
selected.

Stage 2: The presence of a nonlinear form is determined using the classical F-test. For
this, the null hypothesis denoted as c3 = c4 = 0 is tested. If the null hypothesis cannot be
rejected, it can be concluded that the data generation process occurs with frequency effects.
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Conversely, if the null hypothesis is not rejected, the data generation process will be the same
as the traditional DF process. Additionally, if the null hypothesis indicating the absence of
frequency effects cannot be rejected, and if the error terms obtained from Equation (11) exhibit
autocorrelation, Equation (11) can be expanded with lagged values of4yt, resulting in Equation
(12) to account for the autocorrelation.

ρyt−1 + c1 + c2t+ c3sin

(
2πkt

T

)
+ c4cos

(
2πkt

T

)
+

p∑
i=1

βi4yt−i + εt (12)

If the F-statistic value obtained from the application of Equation (11) or (12) is smaller than
the critical value, the null hypothesis of the absence of a linear trend is not rejected. In this case,
it is recommended to perform the Augmented Dickey-Fuller (ADF) test to further examine the
presence of a unit root. For parameter estimation, the following four models have been used:

3.3 Models

The models shown below were utilized in the study Models.

1. ARIMA

2. ARFIMA

3. Fourier-ARMA: F-ARMA

4. Time varying AR: TvAR

3.3.1 ARIMA(p,d,q) Model

The ARIMA(p, d, q) model, introduced by Box-Jenkins (1976), assumes that a time series with
dth-degree stationarity is influenced by its own lag of order p and random shocks of order q.
The ARIMA(p, d, q) model is expressed as follows:

Yt = φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + ut + θ1ut−1 + θ2ut−2 + · · ·+ θqut−q (13)

The equation (13) can be succinctly expressed as follows.

Yt =

p∑
i=1

φiYt−i + ut+

q∑
j=1

θjut−j (14)

The forecasting stage of the ARIMA(p,d,q) model is based on the Box-Jenkins approach.
The steps of the Box-Jenkins approach can be summarized as follows:

1. Identification

2. Estimation

3. Diagnostic testing

In this context, identification refers to determining the orders of p, d, and q parameters in
the ARIMA(p, d, q) model. Once the appropriate model orders are determined for the series,
the model needs to be estimated using suitable estimation methods. The parameter estimates
obtained from the model should satisfy the theoretical constraints and be statistically significant.
Additionally, the error terms derived from the model should be free from autocorrelation and
exhibit a pure random process (Asteriou & Hall, 2021).
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3.3.2 ARFIMA Model

The degree of integration, which measures the resistance of a time series to shocks, may not
always be expressed as an integer. The series being I(0) or I(1) indicates whether the series is
resistant or non-resistant to shocks. Especially in financial time series, the responses to shocks
can vary. In other words, even though shocks may not be temporary, the series can exhibit
resistance to shocks. In such cases, it may take a long time for the series to revert to its mean.
Series with this characteristic are referred to as long memory series in the time series literature
(Mert & Çaǧlar, 2019). Granger and Joyeux (1980), Hosking (1981), in their respective studies,
proposed alternative models that allow for fractional degrees of integration based on the long
memory property of time series. This model is known as the ARFIMA(p, d, q) model in the
time series literature. The general structure of the ARFIMA(p, d, q) model is similar to the
ARIMA(p, d, q) model, but the parameter d is defined as follows in the relevant articles.

∇d = (1− L)d =

∞∑
k=0

(
d
k

)
(−1)kLk =

∞∑
k=0

Γ(−d+ k)

Γ(−d)Γ(k + 1)
Lk (15)

In Equation (15), −1/2 < d < 1/2, and Γ represents the gamma function. As the value
of the parameter d increases, the resistance of the series to reverting to the mean in the face
of shocks also increases. When d = 0, it indicates that the time series is short memory and
transforms into an ARMA model. If the value of d is in the range 0 < d < 0.5, the process
is considered long memory. If the value of d is in the range −0.5 < d < 0, the process is
considered medium memory or hyper-differentiated. When 0 ≤ d < 1, it is assumed that the
series is non-stationary but will revert to its mean in the long run.

3.3.3 Fourier ARMA Model

There is a vast and growing body of literature indicating that traditional time series models
fail to accurately capture the behavior of numerous important economic variables. The funda-
mental issue lies in the linearity of conventional time series models, which consequently imply a
symmetric adjustment process. Let’s reconsider the basic linear AR(1) model (Ludlow, 2000).

xt = αxt−1 + εt (16)

Let xt be a stationary random variable εt and be a white noise disturbance satisfying
Et−1ε

2
t = E2 = σ2 for every time period t. Equation (16) can be modified in various ways,

such as incorporating deterministic regressors, introducing lagged values of {xt} to introduce
moving average components, and including variables that explain the behavior of {xt}. However,
the essential characteristic of Equation (16) remains that the extent of autoregressive decay is
determined solely by the constant value of α. It is feasible to estimate an ARMA model with
time-varying coefficients without requiring prior specification of the adjustment process. The
model exhibits linearity with respect to {xt}, facilitating straightforward out-of-sample forecasts.
Eq. (16) can be easily transformed into a random-coefficient model. Let’s consider:

xt = αtxt−1 + εt (17)

αt = a0 + a1αt−1 + vt (18)

It is feasible to estimate the parameters a0 and a1 as well as the variances of both εt and
vt jointly. Due to the autoregressive coefficient at following the autoregressive process described
by Eq (17), {xt}, will exhibit periods characterized by relatively rapid and relatively slow au-
toregressive decay.
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3.3.3.1. Approximating non-linear adjustment using Fourier series

A simple modification of Equation (16) involves allowing the autoregressive coefficient to
vary with time, denoted by αt. In contrast to Equation (18), we consider a deterministic but
unknown function of time for the autoregressive coefficient [i.e., αt]. The key difference between
the random-coefficient model and our formulation is that we do not specify the exact form of
α (t). However, under very mild conditions, the behavior of α (t) can be accurately represented
using a sufficiently long Fourier series. For instance, if α (t) is an absolutely integrable function,
it is possible to express it with any desired level of accuracy as follows:

yt = α (t) yt−1 + εt (19)

α (t) =A0+
s∑

k=1

[
Aksin

2πk

T
∗t+Bkcos

2πk

T
∗t
]

(20)

Here, the parameter s represents the number of frequencies present in the process that gener-
ates α (t). The crucial point is that the behavior of any deterministic sequence can be effectively
captured using a sinusoidal function, even if the sequence itself is not periodic. Therefore,
non-linear coefficients can be represented by a deterministic time-dependent coefficient model
without initially specifying the nature of asymmetry and/or heteroskedasticity. This approxi-
mation approach is such that the standard ARMA model arises as a special case. In the event
that the actual data-generating process is linear, all values of A and B in Equation (20) should
be zero. Thus, instead of postulating a specific model, the focus shifts to selecting the appro-
priate frequencies to include in Equation (20). Since it is the process represented by the Fourier
approach in (19) and (20), it is called the F-ARMA process. Given that s can be large, the
estimation problem revolves around determining certain Fourier coefficients to include in the
analysis.

3.3.3.2. Characteristics of first order F-ARMA models

The assumption underlying Equation (20) is that s is finite, allowing for the representation of
α (t)as a finite sum of Fourier coefficients. It is worth noting that the conventional AR(1) model
arises as a special case when α (t) =A0. Additionally, it is assumed that α (t) is a deterministic
bounded continuous function defined over the real numbers. Specifically, it is assumed to be a
positive number L such that 0 < |α(t)| < L < 1for all integer values of t in the range [0, T].
Since α (t)is known to be deterministic, the conditional mean and variance can be derived as
follows:

Et−1yt = α(t)yt−1 (21)

Et−1y
2
t = α(t)2y2t−1 + σ2 (22)

Therefore, given the information available in period (t-1), the persistence and volatility of
the {xt} sequence are both positively associated with the absolute value of α (t) Since α (t) is
not constant, the extent of autoregressive decay and the conditional variance will vary over time.

3.3.3.3. Methodological steps to use the Fourier-ARMA approach

To use the Fourier ARMA approach, it is necessary to follow the methodological steps below.
1. Determine the optimal ARMA model that provides the best fit, following the structure:

yt = α0 +

p∑
i=1

αiyt−i+

p∑
i=1

βiεt−i+εt (23)
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This can be accomplished either through the conventional Box-Jenkins methodology or by
employing a straightforward procedure that entails selecting the model with the lowest SBC
(Schwarz Bayesian Criterion). Regardless of the chosen estimation strategy, compute the SBC
and store the residuals in the series {ε̂t}. In the case of a linear process, Equation (21) should
encompass all dynamic fluctuations in the {yt} series. However, in instances where non-linear
behavior is suspected, identify the coefficient that is considered a particularly suitable candidate
for temporal variability.

2. If coefficient ”αL” is chosen, estimate the following for each value of ”k” within the range
from 1 to T/2:

ε̂t = Aksin

(
2πkt

T

)
yt−L +Bkcos

(
2πkt

T

)
yt−L + vt (24)

Likewise, if coefficient ”βL” is selected, estimate the following for each value of ”k” within
the range from 1 to T/2

ε̂t = Aksin

(
2πkt

T

)
ε̂t−L +Bkcos

(
2πkt

T

)
ε̂t−L + vt (25)

If the inclusion of the most prominent frequency (k*) fails to decrease the SBC, conclude
the search for significant frequencies and proceed to Step 4. Utilize a student’s t-distribution to
test the null hypotheses A∗ = 0 and B∗ = 0. If both exclusions are inconclusive, discontinue
the search for significant frequencies and move on to Step 4.

3. If there are non-binding exclusion restrictions, impose them by setting A∗ or B∗ = 0.
Estimate the model by incorporating only the significant Fourier coefficient(s) while including
frequency k∗. For instance, if coefficient ”αL” is selected, proceed with the following estimation:

yt = α0 +

p∑
i=1

αiyt−i+
n∑
i=1

[
A∗i ∗ sin

(
2πk∗i t

T

)
+B∗i ∗ cos

(
2πk∗i t

T

)
+

]
yt−L +

q∑
i=1

βiεt−i+εt

(26)
where ’k∗i ’ represents the identified Fourier frequencies. Store the residuals as {ε̂t} and proceed
back to Step 2.

yt = α0 +

p∑
i=1

αiyt−i+
n∑
i=1

[
A∗i ∗ sin

(
2πk∗i t

T

)
+B∗i ∗ cos

(
2πk∗i t

T

)
+

]
yt−L +

q∑
i=1

βiεt−i+εt

(27)
where ’k∗i ’ represents the identified Fourier frequencies. Store the residuals as {ε̂t} and proceed
back to Step 2.

4. Once the identified frequencies and their associated non-zero values for A∗ and/or B∗
are available, the complete model estimation can be performed according to Equation (24),
encompassing all the identified Fourier coefficients. It is crucial to conduct diagnostic checks at
this stage. It has been observed that the inclusion of Fourier coefficients often leads to reduced
p-values for various A∗i and B∗i terms. To determine whether any of these coefficients can be
excluded from the model, one can utilize a standard t-distribution or F-distribution. Similarly,
the t*-statistic can be employed to assess the significance of A∗ and/or B∗ values. If it is
possible to exclude all values of A∗ and/or B∗, it can be concluded that the {yt} sequence does
not exhibit any asymmetries.

3.3.4 TvAR Model

Autoregressive models utilize past values of the dependent variable as predictors to capture the
patterns and progression of a process over time. This dependency follows a linear relationship,
and the coefficients can be estimated using ordinary least squares (OLS) methodology. For a
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meaningful estimation of the coefficients, it is crucial that the variables in the model exhibit
stationarity. The mathematical expression of the AR(p) model is represented by

yt = β0 + β1yt−1 + · · ·+ βpyt−p + γ1x1t + · · ·+ γdxdt + ut (28)

It is important to note that the dependent variable, yt, in equation (28), is influenced by its
own lagged values and possibly other exogenous variables. The time-varying coefficient autore-
gressive (TvAR) model is a form of autoregressive model where the coefficients are functions
of zt, which can represent a rescaled time period or a random process. For instance, in the
TvAR(p) model, the regressors consist of the p-lagged values of the dependent variables.

yt = β0(zt) + β1(zt)yt−1 + · · ·+ βp(zt)yt−p + γ1(zt)x1t + · · ·+ γd(zt)xdt + ut (29)

represents the specific mathematical expression of the model. The variable zt can be interpreted
as the rescaled time, denoted as τ = t/T, or as a realization of a random variable. Notably, Chen
and Tsay (1993) and Heydt et al. (2001) introduced the functional coefficient autoregressive
(FAR) model, which is a type of TvAR model where the coefficients are functions of the lagged
values of the dependent variable. In this FAR model,

yt = β0(yt−p) + β1(yt−p)Xt−1 + · · ·+ βp(yt−p)Xt−p + ut (30)

represents the specific expression defining the functional coefficients. The parameters of the
TvAR model are estimated using FLS, FLS-Kalman, and State-Space-Kalman algorithms (Kal-
aba & Tesfatsion, 1989).

4 Data, Estimation and Forecasting Results

The analysis utilized data for the USD/TRY exchange rate covering the period from January
2000 to December 2022. The data, consisting of a total of 276 observations, was obtained from
TCMB EVDS. Descriptive statistics for the USD/TRY exchange rate are presented in Table 2,
while the time series plot of its movement over the mentioned period is shown in Figure 1.

Table 2: Descriptive Statistics for USD/TRY Exchange Rate

USD

Mean 3.246739

Median 1.685000

Maximum 18.65000

Minimum 0.550000

Std.Deviation 3.544271

Variation Coef. 109.1640

Skewness 2.677244

Kurtosis 10.40599

Jarque-Bera 960.4717

Probability 0.000000

Observations 276

During the analysis period, it is observed that the USD/TRY exchange rate has an average
value of 3.25. The minimum and maximum values are 0.55 and 18.65, respectively. The positive
skewness coefficient and the kurtosis value less than 3 indicate that the data of the USD/TRY
series have a right-skewed and leptokurtic distribution compared to a normal distribution. These
results suggest that the majority of the data points in the USD/TRY series are smaller than the
mean, indicating a higher frequency of lower values, and also imply a large variance in the series.
The very high coefficient of variation, such as 109.16, clearly indicates a substantial variance in
the series. The Jarque-Bera test statistic and its probability value indicate that the USD/TRY
series does not follow a normal distribution.
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Figure 1: Time Series Plot of USD/TRY Exchange Rate

Analyzing the graph of the USD/TRY series, it becomes evident that there was a linear trend
observed between the years 2000 and 2018. However, after 2018, it exhibits an exponential trend.
Although the graph indicates non-linearity of the series, its linearity has been tested using the
Harvey et al. (2007) and Harvey et al. (2008) tests, and the results are presented in Table 3.

Table 3: Linearity Tests

Harvey (2007) Harvey (2008)

Variable W◦10% W◦5% W◦1% W λ

USD/TRY 23.60*** 23.67*** 23.79*** 12.31**

Note: ◦ indicate Harvey (2007) test. **, *** indicate %5, and %1 significance level respec-
tively.

According to the information presented in Table 3, the test statistics for Harvey (2007)
exceed the chi-square critical values with 4 degrees of freedom, and the test statistic for Harvey
(2008) is greater than the chi-square critical value with 2 degrees of freedom at a significance
level of 5%. Therefore, the null hypotheses stating that the series is linear are rejected. In other
words, the USD/TRY series is not linear. The detection of stationarity for a nonlinear series is
performed using unit root tests such as STAR, ESTAR or LSTAR.

Table 4: Sollis Test

Variables Constant Constant and Trend

Test stat. F stat lag Test stat. F stat lag

USD 2.49688 4.32842 1 0.81816 1.51568 1

∆USD 46.0482*** 35.1638*** 1 46.0335*** 41.7514*** 1

Note: *** indicate %1 significance level respectively.

As a result of the examination of the information given in Table 4, it was concluded that the
null hypothesis, which states that the hypothesis of the series is not stationary, is undeniable
in the equation containing both constant and constant and trend for the level values of the
USD variable. Since the USD series is not stationary, the first difference of the series was taken
and then again subjected to the Sollis test. According to the test results applied to the first
difference series, the null hypotheses are rejected because the test statistic and the F statistic
are larger than the relevant critical values. That is, the series has ESTAR stationarity at the
first difference. In addition, the series has an asymmetric feature in the mean reversion process.
In other words, the rate of reversion to mean of negative and positive shocks is not the same.
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Table 5: Flexible Fourier ADF Test

Variables Constant Constant and Trend

Test stat. F stat k lag Test stat. F stat k lag

USD -1.22744 13.38*** 1 1 -3.93690 9.88*** 1 1

∆USD -11.8697*** 4.65* 1 1 -11.8490*** 3.74 1 1

Note: *, and *** indicate %10, and %1 significance level respectively.

Analyzing the data presented in Table 4, it was determined that the USD series’ level values
are non-stationary in both the equation with a constant term and the equation with both a
constant and a trend term. In both equations, the test statistics are smaller than the critical
values in absolute terms, indicating that the null hypothesis, which suggests that the USD
series is non-stationary, cannot be rejected. Furthermore, when considering the equation with
a constant term, it was determined that the F-statistic is not significant. This result indicates
that there is no need for Fourier terms in the equation containing a constant term. However, in
the equation containing both a constant and a trend term, since the F-statistic is greater than
the critical value, the null hypothesis indicating the absence of frequency effect on the USD
series is rejected. In other words, the frequency effect represented by sine and cosine on the
USD series is significant. Since the USD series is non-stationary in the first difference, the series
is subjected to the Flexible Fourier ADF test after taking the difference, and according to the
obtained results, the test statistics are greater than the critical values in absolute terms, leading
to the rejection of the null hypothesis suggesting that the USD series is non-stationary. In other
words, the USD series is stationary in the first difference. Additionally, since the F-statistics are
insignificant, it can be said that there is no frequency effect on the differenced series.

Based on the information presented in Table 4 and Table 5, it was concluded that the USD
series is not stationary in level or it is an I(1) series. Thus, the first difference of the USD
series will be used in the estimation phase of the ARIMA and Fourier-ARMA models. The
aforementioned models were estimated and the results were presented in the following tables
and figures.

According to the results provided in Panel A of Table 6, the AR and MA coefficients (except
MA(2)) are statistically significant. The individual AR coefficients being individually and sum
of the coefficients less than one in absolute value suggests that shocks in previous months do
not have a lasting impact on the current month. Considering the MA coefficients, it can be
observed that random shocks do not have a significant effect on the USD/TRY series. Based on
the results in Panel A1, it is concluded that there is no autocorrelation in the residuals obtained
from the ARIMA model, and the model is invertible. The ARFIMA results presented in Panel
B indicate that 0<D=0.296224<0.5 that the USD/TRY series exhibits long memory properties.
In other words, the USD/TRY exchange rate is dependent on long past values, implying that
there is an effect of long past on the current value. The individual and sum of AR coefficients
being less than one suggest that past exchange rate changes do not have a permanent effect on
the current exchange rate. Additionally, the significance of the MA coefficient being less than
one indicates that random shocks have a temporary impact on the USD/TRY exchange rate.
The results provided in Panel B1 demonstrate that the residuals obtained from the ARFIMA
model do not exhibit autocorrelation and the model is invertible. Based on the results of both
models, out-of-sample forecasts can be made for the USD/TRY exchange rate.

The estimation results of the F-ARMA model are provided in Table 7. Here, the frequency
count is taken cumulatively as 24. According to the critical values of t and F shown in Table
1 by Ludlow (2000), it has been determined that the Fourier terms are statistically significant
both individually and jointly. The statistical significance of Fourier terms indicates that in the
F-ARMA model, either the constant coefficient or the long-term equilibrium value changes over
time, which implies that the long-term value of the USD/TRY exchange rate is unstable. Since
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no autocorrelation problem was detected in the obtained residuals of the model, and the absolute
values of the AR and MA parameters in the model are all less than one, the model is invertible.
Therefore, this model can be used for out-of-sample forecasting.

Table 6: The Results of ARIMA and ARFIMA Models

Variables Coefficient

Panel A: Results
of ARIMA Model

c 0.01055***

AR(1) -0.49311***

AR(2) 0.44425***

AR(3) 0.84376***

MA(1) 0.95701***

MA(2) -0.17543

MA(3) -0.86454***

MA(4) -0.41909***

Panel A1: Diag-
nostic check

Breusch-Godfrey LM Test Prob (χ2(4))=0.9675

Stability Test Model is invertible

Panel B: Results
of ARFIMA
Model

c 1.592397

D 0.296224***

AR(1) 0.944991***

AR(2) -0.54970***

AR(3) 0.304711***

MA(5) -0.15728**

Panel B1: Diag-
nostic check

Breusch-Godfrey LM Test Prob (χ2(4))=0.41

Stability Test Model is invertible

Note: *, **, *** indicate %10, %5, %1 significance level respectively.

The prediction results of the time-varying autoregressive (TvAR) model are presented in
Figure 2. Due to the fact that the coefficients in this model vary at every moment in time, it
is difficult to present these results in a standard tabular format. Therefore, the TvAR model
results are presented in graphical form. Additionally, in order to examine whether the coefficients
are statistically significant over time, graphs depicting the time-varying t-statistics for each
coefficient are provided. When examining the graph of the constant coefficient or the long-term
equilibrium value associated with the model, it is observed that there is significant instability in
the long-term equilibrium value of the USD/TRY exchange rate after 2008. Furthermore, the
impact of the previous month’s exchange rate changes on the current month’s exchange rate has
been found to be both negative (downward) and positive (upward).
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Table 7: The Resultsfar of F-ARMA Model

Variable Coefficient

C 0.012992***

AR(1) 0.955348***

AR(2) -0.789373***

MA(1) -0.872810***

MA(2) 0.685274***

SIN((2*3.14*1*t)/276) -0.008479***

COS((2*3.14*1*t)/276) 0.011568***

SIN((2*3.14*2*t)/276) -0.001011***

COS((2*3.14*2*t)/276) 0.009346***

SIN((2*3.14*3*t)/276) 0.002399***

COS((2*3.14*3*t)/276) 0.007372***

SIN((2*3.14*4*t)/276) 0.001780***

COS((2*3.14*4*t)/276) 0.003639***

SIN((2*3.14*5*t)/276) 0.002322***

COS((2*3.14*5*t)/276) 0.002543***

SIN((2*3.14*6*t)/276) 0.000534***

COS((2*3.14*6*t)/276) -0.002805***

SIN((2*3.14*7*t)/276) -0.003107***

COS((2*3.14*7*t)/276) -0.008045***

SIN((2*3.14*8*t)/276) 0.001052***

COS((2*3.14*8*t)/276) -0.001633***

SIN((2*3.14*9*t)/276) 0.001606***

COS((2*3.14*9*t)/276) -0.008399***

SIN((2*3.14*10*t)/276) -0.007665***

COS((2*3.14*10*t)/276) -0.001948***

SIN((2*3.14*11*t)/276) -0.000396*

COS((2*3.14*11*t)/276) -0.002569***

SIN((2*3.14*12*t)/276) -0.001787***

COS((2*3.14*12*t)/276) -0.007730***

SIN((2*3.14*13*t)/276) -0.002487***

COS((2*3.14*13*t)/276) -0.011337***

SIN((2*3.14*14*t)/276) 0.004729***

COS((2*3.14*14*t)/276) -0.001770***

SIN((2*3.14*15*t)/276) -0.006052***

COS((2*3.14*15*t)/276) 0.004424***

SIN((2*3.14*16*t)/276) -0.004064***

COS((2*3.14*16*t)/276) 0.006292***

SIN((2*3.14*17*t)/276) 0.001357**

COS((2*3.14*17*t)/276) 0.001869**

SIN((2*3.14*18*t)/276) 0.002297***

COS((2*3.14*18*t)/276) 0.009837***

SIN((2*3.14*19*t)/276) 0.007115***

COS((2*3.14*19*t)/276) 0.005584***

SIN((2*3.14*20*t)/276) -0.000653

COS((2*3.14*20*t)/276) 0.004659***

SIN((2*3.14*21*t)/276) 0.003989***

COS((2*3.14*21*t)/276) 0.003385***

SIN((2*3.14*22*t)/276) 0.005642***

COS((2*3.14*22*t)/276) -0.000626

SIN((2*3.14*23*t)/276) 0.002698**

COS((2*3.14*23*t)/276) -0.002392*

SIN((2*3.14*24*t)/276) 0.004470***

COS((2*3.14*24*t)/276) -0.004547***

Breusch-Godfrey LM Test Prob (χ2(??))=0.37**

Stability Test Model is invertible

Note: *, **, *** indicate %10, %5, %1 significance level respectively.
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Figure 2: Time-varying AR Parametrs and t Tests

There is a continuous downward trend observed from January 2000 to September 2006,
followed by an increasing trend between October 2006 and October 2008. A negative impact
is observed again between November 2008 and April 2012, while a positive impact is observed
between May 2012 and December 2022. The changes in the exchange rate two months ago have
generally had a decreasing effect on the current period’s exchange rate between January 2000
and October 2018, but had an increasing effect between November 2018 and December 2022.
The impact of the changes in the exchange rate three months ago on the current exchange rate
has remained relatively constant over time, indicating almost constant effect.
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Table 8: Forecasting Comparison of the Models

Horizon RMSE MAPE

ARIMA ARFIMA F-
ARMA

TvAR ARIMA ARFIMA F-
ARMA

TvAR

3 3.777053 4.45654 0.213243 0.19829 43.92516 70.05378 2.904676 2.08571

6 8.126489 8.72088 0.216847 0.20863 45.64104 73.83715 3.209128 2.68307

9 11.76294 10.3184 0.256209 0.21972 48.58427 79.51370 4.902713 2.96815

12 13.96528 13.6891 0.370841 0.26851 49.06719 84.00813 5.638144 3.68276

Figure 3: F-ARMA and TvAR

In order to comparing the performance of ”in-sample” forecasts for the ARIMA, ARFIMA,
F-ARMA, and TvAR models, the RMSE and MAPE criteria were used. The obtained results
are presented in Table 8. According to the information given in Table 8, the F-ARMA and TvAR
models exhibit better ”in-sample” forecast performance. Comparing the forecast performances
of the F-ARMA and TvAR models, it was found that the TvAR model outperforms the F-
ARMA model. Therefore, out-of-sample forecasts were not conducted for the ARIMA and
ARFIMA models. Out-of-sample forecast results using the F-ARMA and TvAR models are
presented in Figure 3. As observed from the graphs, the confidence intervals calculated for the
out-of-sample forecast values of the F-ARMA model are wider than TvAR. This result is due
to the standard errors of the F-ARMA model being larger than those derived from the TvAR
model. Considering these reasons, we can conclude that the out-of-sample forecasts of the TvAR
model are more successful.
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5 Conclusion

The main objective of this study was to provide evidence that the TvAR model would deliver su-
perior forecasts compared to its alternative models, namely ARIMA, ARFIMA, and F-ARMA.
To achieve this, linear tests conducted by Harvey (2007) and Harvey (2008) on the monthly
USD/TRY series spanning 23 years revealed nonlinearity in the series. The series was found to
be nonlinear based on the nonlinear Sollis (2009) unit root test and the flexible Fourier ADF
(Enders-Lee, 2012) tests. Considering the forecasting performances of the ARIMA, ARFIMA,
F-ARMA, and TvAR models estimated using the USD/TRY series, the TvAR model yielded
better forecasting results.
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